
Research Article Spring 2017 - I524 1

Remotely Deploying, Visualizing and Controlling a
Robot Swarm with ROS and Cloudmesh
MATTHEW LAWSON1 AND GREGOR VON LASZEWSKI1,*

1School of Informatics and Computing, Bloomington, IN 47408, U.S.A.
*Corresponding authors: laszewski@gmail.com

Project: S17-IO-3010, July 22, 2017

Working with robot swarms has emerged as an important area of robotics research. Since the cost of de-
ploying physical robot swarms could prove time-consuming and cost-prohibitive to research departments,
the field needs a convenient, cost-efficient method of educating the next generation of experts. Hence, we
explore the the feasibility of simulating such swarms while harnessing remotely-located, distributed com-
puting environments to conduct such simulations. In particular, our interest lies in using and re-using
cloud computing resources to simulate large-scale robot swarms. Therefore, we produced the proof-of-
concept deployment model described in the following pages, which creates a two-robot virtual swarm
on multiple clouds to which we have access. Importantly, deployment occurs with minimal user inter-
vention, opening up the research field to STEM students and undergraduate freshmen, as well as PhD
students. Users can observe the robots’ behavior through a streamed visual simulation. We demonstrate
that users can start up the behavior of a robot through a single command, allowing us to benchmark the
activity streams of the swarm in the cloud. The project uses open source software throughout, includ-
ing the Open Source Robotics Foundation’s (OSRF) Robot Operating System to define, create and control
the virtual robots. The OSRF’s Gazebo program provides the visualization of the simulation. Cloudmesh
simplifies interaction with the various clouds we use.

Keywords: Cloud, I524, ROS, Gazebo, Robot, Swarm

Report: https://github.com/cloudmesh/sp17-i524/tree/master/project/S17-IO-3010/report/report.pdf
Code: https://github.com/cloudmesh/cloudmesh.ros

1. INTRODUCTION

With the evolution of robotics and its increased influence in soci-
ety we anticipate the need to deal with robot swarms. Thus, we
need to educate the next generation of scientists by offering the
ability to simulate a multiple and diverse sets of robot swarms.
Simulation mitigates operational risk prior to real-world deploy-
ment even as it allows researchers to interact with swarms while
conducting actions and observing the swarm’s responses to its
environment. Furthermore, simulation on a cluster of remotely-
located computers allows users to conduct such research in a
cost-effective manner on platforms with computational capa-
bilities far in excess of those provided by a single workstation.
The question we ask, would it be possible to simulate tens of
thousands of robots in a cloud environment?

However, deployment of an interconnected swarm of virtual
robots in a cloud imposes additional requirements on the scien-
tist researching such swarms. Although researchers can choose
from a multitude of cloud providers currently, provisioning and
configuring multiple computers presents a time and resource
challenge versus a single-host setup. In addition, network se-

curity measures, such as ssh keys and port access, impede ROS’
intra-cluster communication capabilities. Since these aspects
typically remain out of reach for entry-level educational commu-
nities such as college freshmen or non-technical STEM students,
our project attempts to lower the barrier of managing such a
virtual swarm to a level accessible by individual researchers as
well as freshmen and STEM students. In order to address the
unique requirements of a networked, remotely-located swarm,
we develop a multi-platform system to automate the creation
and deployment of the virtual swarm, with access to numerous
clouds enabled by cloudmesh [? ].

2. VIRTUAL ROBOT SWARM COMPONENTS

2.1. Robot Operating System (ROS) [1]

The Open Source Robotics Foundation’s middleware product
Robot Operating System, or ROS, provides a framework for writ-
ing operating systems for robots. ROS offers “a collection of
tools, libraries, and conventions [meant to] simplify the task
of creating complex and robust robot behavior across a wide
variety of robotic platforms” [3]. The Open Source Robotics

https://github.com/cloudmesh/sp17-i524/tree/master/project/S17-IO-3010/report/report.pdf
https://github.com/cloudmesh/cloudmesh.ros


Research Article Spring 2017 - I524 2

Fig. 1. A Conceptualization of What ROS, the Robot Operating System, Offers to Roboticists [2]

Foundation, hereinafter OSRF or the Foundation, attempts to
meet the aforementioned objective by implementing ROS as
a modular system. That is, ROS offers a core set of features,
such as inter-process communication, that work with or without
pre-existing, self-contained components for other tasks.

Figure 1 depicts the three parts of the ROS universe: a) the
plumbing, ROS’ communications infrastructure; b) the tools,
such as ROS’ visualization capabilities or its hardware drivers;
and c) ROS’ ecosystem, which represents ROS’ core developers
and maintainers, its contributors and its user base.

The modules or packages, which are analogous to packages
in Linux repositories or libraries in other software distributions
such as R, provide solutions for numerous robot-related tasks
and challenges. General categories include a) drivers, such as
sensor and actuator interfaces; b) platforms, for steering and
image processing, etc.; c) algorithms, for task planning and ob-
stacle avoidance; and, d) user interfaces, such as tele-operation
and sensor data display. [4]

2.1.1. Communications Infrastructure

General OSRF maintains three distinct communication meth-
ods for ROS: a) message passing; b) services; and, c) actions. Each
method utilizes ROS’ standard communication type, the mes-
sage [5]. Messages, in turn, adhere to ROS’ interface description
language, or IDL. The IDL dictates that messages should be in
the form of a data structure comprised of typed fields [6]. Fi-
nally, .msg files store the structure of messages published by
various nodes so that ROS’ internal systems can generate source
code automatically. The virtual swarm and the talker/listener
robots utilize ROS’ message passing capabilities in project’s this
implementation.

Message Passing ROS implements a publish-subscribe anony-
mous message passing system for inter-process communication,
hereinafter pubsub, as its most-basic solution for roboticists. A
pubsub system consists of two complementary pieces: a) a de-
vice, node or process, hereinafter node, publishing messages,
i.e., information, to a topic; and b) another node listening to and
ingesting the information from the associated topic. Designating
topics to which a node should subscribe and topics to which a
node should publish falls to the roboticist. ROS’ rosnode com-
mand line tool conveniently "display[s] a list of active topics, the
publishers and subscribers of a specific topic, the publishing rate
of a topic, the bandwidth of a topic, and messages published to
a topic" [7].

Pubsub’s method of operation analogizes to terrestrial ra-

dio. In the analogy, the radio station represents the publishing
node, the radio receiver maps to the subscribing node and the
frequency on which one transmits and the other receives repre-
sents the topic. Unlike terrestrial radio, though, ROS provides a
lookup mechanism versus "flipping through the dial."

The OSRF touts the pubsub communications paradigm as
the ideal method primarily due to its anonymity and its require-
ment to communicate using its message format. With respect
to the first point, the nodes involved in bilateral or multilateral
conversations need only know the topic on which to publish
or subscribe in order to communicate. As a result, nodes can
be replaced, substituted or upgraded without changing a single
line of code or reconfiguring the software in any manner. The
subscriber node can even be deleted entirely without affecting
any aspect of the robot except those nodes that depend on the
deleted node.

In addition, ROS’ pubsub requires well-defined interfaces
between nodes in order to succeed. For instance, if a node
publishes a message without a crucial piece information a sub-
scribing node requires or in an unexpected format, the message
would be useless. Alternatively, it would be pointless for an
audio processing node to subscribe to a node publishing lidar
data. Therefore, a message’s structure must be well-defined and
available for reference as needed in order to ensure compatibility
between publisher and subscriber nodes. As a result, ROS has a
modular communication system. That is, a subscriber node may
use all or only parts of a publishing node’s message. Further, the
subscribing node can combine the data with information from
another node before publishing the combined information to
a different topic altogether for a third node’s use. At the same
time, a fourth and fifth node could subscribe to the original topic
for each node’s respective purpose.

Finally, ROS’ pubsub can natively replay messages by saving
them as files. Since a subscriber node processes messages re-
ceived irrespective of the message’s source, publishing a saved
message from a subscriber node at a later time works just as well
as an actual topic feed. One use of asynchronous messaging:
postmortem analysis and debugging.

2.2. Gazebo

The Foundation also supports Gazebo, ROS’ 3D virtual simula-
tion software. “Gazebo...simulate[s] populations of robots in
complex indoor and outdoor environments. [It] offers physics
simulation at a much higher degree of fidelity [than gaming
engines], a suite of sensors, and interfaces for both users and



Research Article Spring 2017 - I524 3

Fig. 2. Deployment Workflow for the Virtual Robot Swarm
Project

programs [8].” Gazebo’s usefulness center on three main fea-
tures: a) physics engines compatibility; b) its graphics engine;
and c) its sensor-data generators. with respect to physics en-
gine compatibility Gazebo interfaces well with Open Dynamics
Engine [9] (ODE), the default; b) Bullet [10]; SimBody [11]; and,
DART [12]. Roboticists also benefit from its 3D graphics engine,
Object-oriented Graphics Rendering Engine [13] (OGRE), which
provides a C++ class library to “[abstract away] the details of
using the underlying [graphics] system libraries like Direct3D
and OpenGL [14].” Finally, Gazebo can supply sensor data to the
virtual robot. Virtual sensor support ranges from 2D cameras to
Kinect-style sensors. The system can also generate noisy data to
better simulate real-world results.

Gazebo exists as a stand-alone project, suitable for use by pro-
grams other than ROS. However, it integrates tightly with ROS
given its common ownership. In fact, the version supplied with
a ROS installation automatically establishes communications
between Gazebo and ROS for the end-user [15].

2.3. Ansible
Red Hat, Inc’s [16] Ansible software purports to simplify nu-
merous information technology tasks. It claims to do so by
a) relying upon a human-readable script syntax, YAML; and
b) by automating definable and repeatable IT tasks, such as
configuration management and application deployment. An-
sible’s developers adopted a theater metaphor to describe the
program’s core functions. Thus, a computer’s main duty within
an IT infrastructure corresponds to the role an actor or actress
might play in a theatrical production. Ansible calls the script
a playbook, while the lines and directions within the script are
referred to as tasks. Other aspects diverge from the metaphor,
such as group vars and the config file (ansible.cfg). However,
the inventory file hews to the metaphor - it represents the cast
billing, the delineation of who plays what role. When used with
an Ansible playbook, the inventory file specifies which servers
belong to which logical group(s), i.e., which role(s).

As a result the software’s applicability extends well beyond
simplistic tasks even though Ansible’s designers strive for sim-
plification. In fact, an Ansible user can exercise fine-grained
control over nearly every aspect of his or her IT infrastructure
with a well-designed playbook.

Ansible also attempts to ease the burden of the IT admin-
istrator by eschewing SSL signing servers, daemons or client
software. It simply pushes small programs to the target com-
puters through an SSH connection to execute the desired tasks.
When the task completes, Ansible removes the programs.

2.4. cloudmesh client toolkit
The cloudmesh client toolkit (cm) attempts to abstract away the
complexities of establishing and utilizing different remotely-
accessed computers and computer clusters [17]. Users can create,
access and destroy a virtual machine or cluster of machines by
issuing a single line of commands from a terminal emulator. cm
supports access to clouds based on various back end-software
stacks, including SLURM, SSH, Openstack and Heat. It provides
an API, a command line client and a shell client.

2.5. Testing Environment
The Chameleon project’s cluster of 650+ multi-core computer
nodes, a joint venture between the University of Chicago and the
Texas Advanced Computing Center, provides the infrastructre
for the project. It is colloquially referred to as Chameleon Cloud



Research Article Spring 2017 - I524 4

or CC. A 100Gbps connection runs between the two centers.
Project development primarily occurred on three-node clusters
created as needed using Chameleon Cloud’s m1.medium flavor
of Ubuntu 16.04. Deployment testing also utilized the m1.small,
m1.xlarge and m1.xxlarge flavors CC provides.

Table 1. Deployment Resources

Chameleon Cloud Flavor Specifications

Flavor vCPU RAM Hard Drive

m1.small 1 2 20

m1.medium 2 4 40

m1.large 4 8 80

m1.xlarge 8 16 160

vCPU: count of virtual CPUs; RAM units: MB; Hard
Drive units: GB

2.6. Robots and Worlds with ROS

A ROS robot may be extremely simple, such as the pre-built
talker and listener robots supplied in the ROS distribution, or
as complex as the roboticist desires. If users desire to visualize
the robot, s/he must define his / her ROS robot in Universal
Robot Description Format. A ROS robot’s specifications reside
in a series of files with xacro extensions, referred to as URDF
files. These files, which borrow XML’s syntax structure, can
include specifications for the basic shapes of the robot and its
appendages (if applicable), e.g., rectangular box, cylinder, etc.
with attached wheels; various kinds of joints, such as ones that
rotate around an axis or extend along an axis; types and numbers
of sensors; number of joints in an appendage; colors of the
robot(s); etc., etc. In addition, any file in the robot description
stack may reference an external file to complete the description
of the robot. This capability allows the user to re-use code by
incorporating previously-completed robot features into a new
robot. Finally, simulations include a world file to provide the
setting, or environment, in which the robot simulation occurs.
As with the URDF files, the world file can be simple, like the
empty_world file included in the ROS distribution or extremely
complex.

Finally, a simulation package will include one or more launch
files. These files coordinate the disparate aspects of the entire
simulation package in a manner similar to that of Ansible’s
playbook file. According to the OSRF, best practices for robot
simulation dictate that the main launch file consist of little more
than calls to other launch files in the package [18]. Continuing
with the playbook analogy, the launch files called from the main
launch file would correspond to the roles defined in Ansible.
This functionality significantly increases ROS’ usability since
managing even relatively straightforward robots, simulated or
real, can prove unwieldy. For instance, this project, a proof-of-
concept project, utilizes a .world file, four URDF files and four
launch files in addition to the pre-compiled talker and listener
robots.

This project uses two straightforward differential drive robots
sourced from an online tutorial entitled Simulating Robot Models
in ROS (part 1) [19]

Fig. 3. Example of a Complex Simulated Robot

Fig. 4. Example of Two Simpler Robots



Research Article Spring 2017 - I524 5

3. VIRTUAL ROBOT SWARM PROJECT IMPLEMENTA-
TION

3.1. VR Swarm task
Although the swarm accomplishes the seemingly-trivial task of
driving in circles, the real accomplishment rests in proving the
feasibility of automating the deployment of multiple control-
lable virtual robots on a remote cluster of computers and then
visualizing them on a local computer.

3.2. Deployment
Achieving the aforementioned task requires coordinating a
modestly-complex mix of shell commands, cloudmesh com-
mands, Ansible commands and ROS / Gazebo commands. A
shell script provides the automation for the shell, cloudmesh and
ROS commands, while Ansible’s playbook functionality handles
the Ansible-focused portion. Only the initial step, retrieving
and sourcing the shell script that begins the deployment process,
requires user intervention. However, if the user wants to listen
to the talker robot (talker.py and listener.py), s/he needs to follow
the steps described in the README file.

wget...begin - Retrieve the Initalization Bash Script Deployment
begins when the user retrieves the initalization file, named begin,
from the project’s Github repository. The user then starts the
execution sequence by sourcing the file with the command

> ./begin
from the directory where the begin bash script resides.

begin bash script The bash script calls three cloudmesh_client
commands:

1. > cm cluster define −n rosA1 −c 3
2. > cm cluster allocate
3. > cm cluster cross_ssh

The script creates and prepares a three-node cluster named
rosA1. We then use two additional Cloudmesh commands:

1. > cm cluster nodes
2. > cm vm ip show

to capture the public and private ip addresses of the cluster,
as well as the host names.

The ip addresses and names are written to separate files for
distinct purposes. The host names and private ip addresses are
used to create a file to append to each cluster node’s known_hosts
file. The private ip addresses also end up in a different file that
serves as the basis for a custom Ansible inventory file.

The private ip addresses, termed static ips by Chameleon,
must be used because ROS nodes communicate by binding to
any available port. That is, ROS does not specify the port be-
forehand, and it does not consider whether or not the firewall
blocks the port for security purposes. As a result, intra-cluster
communication requires access to every port, i.e., the firewall
cannot close any port on any computer running ROS when that
computer needs to communicate with another computer in the
cluster. Obviously, this presents a major security concern, es-
pecially on shared resources. Refer to the Deployment Obstacles
section below for the workaround used with this project.

As its penultimate step, the begin script places all the nec-
essary files for the demonstration on the correct cluster nodes.
The ROS robot files and the Ansible files go onto the main node,
while the script places a copy of the known_hosts addendum
onto each cluster node. In addition, the script uses the wget

command to copy the bash script for the next step in the process
onto the main node.

The final lines of the file initiate the next step in the process,
running the beginAgain script on the master node, and perform
a few administrative duties.

beginAgain bash script This script handles the software instal-
lation and initialization of the robots. It first establishes the
veracity of the main node and the other nodes by connecting
to each one in turn via ssh connection. If these steps do not
occur before Ansible runs, the software installations never oc-
cur because Ansible hangs mid-process. Ansible installs all the
necessary software on each cluster node. It installs Linux’s tree
package because the author prefers to use it to view directory
structures; the ROS package; the rosbash package; the rosinstall
package; and, the catkin_tools package. Ansible also creates a
new known_hosts file for each computer node.

Upon completing the installation, the file’s instructions initial-
ize the robot workspace. The catkin_tools package accomplishes
this on behalf of ROS. catkin_tools represents an evolution of
ROS’ built-in catkin family of commands. Initializing the robot
workspace essentially involves the addition of numerous hidden
helper files, which assist in building the robot package. Creating
the robot package, referred to as building the package, involves a
series of automated CMake commands.

With the robot package built, the script copies another script
from github. This small script starts ROS’ talker robot, a simple
robot included as part of ROS’ tutorial packages. It relies upon
Linux’s byobu program to set up usable working environment
if the user chooses to start the listener robot on the third cluster
node.

Finally, execution of the last few lines of the script occurs.
These lines start ROS, start the two robots, create a simulated
world for the robots and then issue a command for the robots
to drive in circles. Gazebo’s simulation of the robots and their
world come back through the ssh connection to the end user so
s/he can see the simulation in real time.

talkListen bash script The talkListen script sets up a multiplexed
terminal environment on the second node and starts ROS’ talker
robot, which ROS’ maintainers include as a pre-built package
with the distribution. It relies upon Linux’s byobu terminal mul-
tiplexing program. Using a series of > byobu−tmux ... commands,
it creates a terminal screen with three panels. ROS’s rosmaster
program starts in panel 1, while the talker program/robot/node
starts in Panel 2. The final panel, panel 0, connects to the third
node in the cluster in anticipation of the user starting the listener
program (also included in the ROS distribution).

3.3. Deployment Performance

In general, completing the deployment process took around
500 seconds, or eight minutes and 20 seconds. Much of that
time, around five minutes, consisted of installing ROS on the
cluster nodes. Since Ansible completes each individual step of
a playbook on each cluster node simultaneously, users should
be able to provision a 5-, 10- or 100-node cluster as quickly
as the three-node cluster used in this project, barring network
communication bottlenecks, etc.

The total amount of time needed increased when using a
higher-spec Chameleon Cloud flavor, as shown in the nearby
table. However, the first portion of the process, handled by the
begin script consistently takes about 130 seconds, irrespective of
the node’s vCPU/RAM/HD combination.



Research Article Spring 2017 - I524 6

Fig. 5. The Multiplexed Talk-Listen Terminal

Furthermore, deployment failures seem to occur about 50%
of the time, independent of the CC flavor chosen. Anecdotally,
then, vCPU/RAM/HD combinations do not seem to be the first
suspect to investigate with respect to failed deployments.

Table 2. Virtual Swarm Deployment Times

Time Needed to Deploy (mean; seconds)

Flavor Part 1 Part 2 Total Notes

m1.small 144 441 555 4/6 attempts succeeded

m1.medium 129 358 487 2/6 attempts succeeded

m1.large 134 401 534 3/6 attempts succeeded

m1.xlarge — — — no successes

Part 1: Consists of begin shell script
Part 2: Consists of beginAgain shell script, which includes the Ansible playbook
and installation of ROS

3.4. Deployment Obstacles

Intra-Node Communication In order to maintain security and en-
able intra-cluster communication, two of the three computer
nodes must have their public ip addresses removed, i.e., dis-
associated, using Chameleon’s browser-based graphical user
interface (GUI), Horizon. Then, and only then, the ports can
be opened by applying the ros security group to the two nodes
in question (the private nodes). Since the third node, the main
node, still has a public-facing ip address, the other two nodes
can be accessed via an ssh connection (ssh’ing) to the main node
and then ssh’ing to one of the private nodes.

Deployment Problems Even if a script or a user completes each
step correctly to set up a controllable virtual swarm on remotely-
located resources, problems still occur that cause deployment

failures. Usually, the issues can be resolved with manual inter-
vention, so the deployment can be completed.

Adding the ROS Repository Key The deployment often
went awry during the Ansible script step that retrieves the repos-
itory key for the ROS repo. When the key retrieval would fail,
the ROS software installation would also fail. Obviously, if the
main node lacks ROS, the simulation will not launch either. As
a workaround, the script adds the repository to each machine
with the deb [trusted=yes] ... syntax. Using this method obviates
the need for the repo key. Although it works, applying it to
repos in general creates unnecessary securirty risks. Therefore,
the workaround should be used sparingly.

Starting the Robot Simulation Errors while starting the
simulation occurred much more frequently during the develop-
ment process than the key repo problem. In fact, approximately
50% of tested deployments failed, almost always at the final step
when launching the simulation.

ROS prints error messages in red to the con-
sole, so they stand out. The most common error:
[gazebo_gui−3] process has died . Sometimes, an almost identical
error occurs, [gazebo−2] process has died , while other times the
launch program cannot find parts of the robot model. The latter
error consists of one or both of the following: Error [parser.cc:581]
Unable to find uri[model://ground_plane and / or Error [parser.cc:581]
Unable to find uri[model://sun . Unlike the previously-described
error, this one requires manual intervention. The user needs to
enter the following commands at the terminal prompt:

1. > killall roscore
2. > killall rosmaster
3. > killall gzclient
4. > killall gzserver
5. > source ~/.bashrc
6. > ./beginAgain



Research Article Spring 2017 - I524 7

Somewhat maddeningly, this process often needs to be com-
pleted twice before the simulation will start successfully. If the
simulation still will not start, refer to the instructions in the
Initializing the Swarm Maually section.

3.5. Initializing the Swarm Manually
If needed the user can manually start the simulation with the
commands listed below. You will need three terminals for the
three commands, so ssh into the main node three times from
three separate consoles or use byobu to split the terminal into
three panes. The command

> roslaunch mybot_gazebo mybot_world.launch
starts the simulation. Entering
rostopic pub /robot1/cmd_vel geometry_msgs/Twist ’{linear: {
x: 0.2, y: 0.0, z: 0.0}, angular: {x: 0.0, y: 0.0, z: 0.1}}’
in a free terminal will command the first robot to begin turning
in a circle. Likewise,
rostopic pub /robot1/cmd_vel geometry_msgs/Twist ’{linear: {
x: 0.2, y: 0.0, z: 0.0}, angular: {x: 0.0, y: 0.0, z: 0.1}}’
moves the second robot. Alternatively, one can delete the cluster
and run the deployment script again.

4. VR SWARM PROJECT CONCLUSIONS

Automating the deployment of a virtual robot swarm on a clus-
ter of remotely accessed computers should allow roboticists to
more easily explore the benefits of collecting data from multiple
sources at the same time over a give geogrpahy and timeframe.
The virtual swarm presented in this paper provides framework
for obtaining those benefits. It also highlights the challenges
presented with an automated deployment, including a) net-
work communication issues like obtaining the ROS repo key
for each cluster node; b) compute resource security concerns
since ROS nodes bind to any available port; c) the exacting na-
ture of the interplay between the host OS, ROS and Gazebo
as shown by the high number of deployment failures despite
seemingly-duplicate processes and resources. The process de-
veloped for this project could perhaps benefit from the use of
different tools and would undoubtedly benefit from a much-
deeper understanding of how ROS functions.
The logical next step in the automation development process
would seem to be projecting a differential drive robot started
on one of the secondary nodes into the world created by ROS
on the main node. The literature the technical feasibility of the
task, although the implementation may prove more difficult
than expected.

5. SUPPLEMENTAL MATERIAL

REFERENCES

[1] Matthew Lawson and Gregor von Laszewski, “Robot Operating Sys-
tem (ROS),” in Projects in Big Data Software and Applications, G. von
Laszewski, Ed., Department of Intelligent Systems Engineering, Indiana
University. Indiana University, 2017, pp. 6–10.

[2] H. Boyer, “Open Source Robotics Foundation And The Robotics Fast
Track,” web page, nov 2015, accessed 19-mar-2017. [Online]. Avail-
able: https://www.osrfoundation.org/wordpress2/wp-content/uploads/
2015/11/rft-boyer.pdf

[3] Open Source Robotics Foundation, “About ROS,” Web page,
mar 2017, accessed 16-mar-2017. [Online]. Available: http:
//www.ros.org/about-ros/

[4] National Instruments, “A Layered Approach to Designing Robot
Software,” Web page, mar 2017, accessed 18-mar-2017. [Online].
Available: http://www.ni.com/white-paper/13929/en/

[5] Open Source Robotics Foundation, “Why ROS?: Features: Core
components,” Web page, mar 2017, accessed 17-mar-2017. [Online].
Available: http://www.ros.org/core-components/

[6] Open Source Robotics Foundation, “ROS graph concepts: Messages,”
Web page, aug 2016, accessed 18-mar-2017. [Online]. Available:
http://wiki.ros.org/Messages

[7] Open Source Robotics Foundation, “rostopic: Package Summary,”
Web page, jun 2016, accessed 09-apr-2017. [Online]. Available:
http://wiki.ros.org/rostopic

[8] Open Source Robotics Foundation, “Beginner: Overview: What is
Gazebo?” Web page, apr 2017, accessed 30-apr-2017. [Online].
Available: http://gazebosim.org/tutorials?cat=guided_b&tut=guided_b1

[9] Open Dynamics Engine, “Open Dynamics Engine Wiki,” Web
page, feb 2017, accessed 30-apr-2017. [Online]. Available: https:
//www.ode-wiki.org/wiki/index.php?title=Main_Page

[10] Real-Time Physics Simulation, “Bullet Physics Library: Real-Time
Physic Simulation,” Web page, apr 2017, accessed 30-apr-2017.
[Online]. Available: http://bulletphysics.org/wordpress/

[11] P. E. Michael Sherman, “Simbody: Multibody Physics API,”
Web page, apr 2017, accessed 30-apr-2017. [Online]. Available:
https://simtk.org/projects/simbody/

[12] Georgia Tech and Carnegie Mellon University, “DART: Dynamic
Animation and Robotics Toolkit,” Web page, mar 2017, accessed
30-apr-2017. [Online]. Available: http://dartsim.github.io

[13] Torus Knot Software Ltd, “OGRE3D,” Web page, apr 2017, accessed
30-apr-2017. [Online]. Available: http://www.ogre3d.org

[14] Torus Knot Software Ltd, “OGRE: About,” Web page, apr 2017,
accessed 30-apr-2017. [Online]. Available: http://www.ogre3d.org/about

[15] Open Source Robotics Foundation, “gazebo-ros-pkgs: Package
Summary,” Web page, aug 2016, accessed 30-apr-2017. [Online].
Available: http://wiki.ros.org/gazebo-ros-pkgs

[16] Red Hat, Inc., “redhat,” Web page, apr 2017, accessed 30-04-2017.
[Online]. Available: https://www.redhat.com/en

[17] G. Laszewski, von, “Cloudmesh Client Toolkit,” Web page, apr 2017,
accessed 30-apr-2017. [Online]. Available: http://cloudmesh.github.io/
client/

[18] Open Source Robotics Foundation, “Roslaunch tips for large projects,”
Web page, nov 2012, accessed 05-may-2017. [Online]. Available:
https://goo.gl/3xBx0t

[19] moorerobots.com, “Simulating Robot Models with ROS (part 1),”
Web page, sep 2016, accessed 15-apr-2017. [Online]. Available:
http://moorerobots.com/blog/post/1

AUTHOR BIOGRAPHIES

Matthew Lawson received his BSBA, Finance in 1999 from the
University of Tennessee, Knoxville. His research interests in-
clude data analysis, visualization and behavioral finance.

The authors would like to thank Mark McCombe for his timely
and useful contribution of code snippets to the project. We
greatly appreciate his time-saving additions to the cause.

https://www.osrfoundation.org/wordpress2/wp-content/uploads/2015/11/rft-boyer.pdf
https://www.osrfoundation.org/wordpress2/wp-content/uploads/2015/11/rft-boyer.pdf
http://www.ros.org/about-ros/
http://www.ros.org/about-ros/
http://www.ni.com/white-paper/13929/en/
http://www.ros.org/core-components/
http://wiki.ros.org/Messages
http://wiki.ros.org/rostopic
http://gazebosim.org/tutorials?cat=guided_b&tut=guided_b1
https://www.ode-wiki.org/wiki/index.php?title=Main_Page
https://www.ode-wiki.org/wiki/index.php?title=Main_Page
http://bulletphysics.org/wordpress/
https://simtk.org/projects/simbody/
http://dartsim.github.io
http://www.ogre3d.org
http://www.ogre3d.org/about
http://wiki.ros.org/gazebo-ros-pkgs
https://www.redhat.com/en
http://cloudmesh.github.io/client/
http://cloudmesh.github.io/client/
https://goo.gl/3xBx0t
http://moorerobots.com/blog/post/1

	Introduction
	Virtual Robot Swarm Components
	Robot Operating System (ROS) paper2
	Communications Infrastructure

	Gazebo
	Ansible
	cloudmesh client toolkit
	Testing Environment
	Robots and Worlds with ROS

	Virtual Robot Swarm Project Implementation
	VR Swarm task
	Deployment
	Deployment Performance
	Deployment Obstacles
	Initializing the Swarm Manually

	VR Swarm Project Conclusions
	Supplemental Material

